Procedurally Generated Space

Student: Saadi,Saadi
Supervisors: Boaz Sternfeld, Yaron Honen

Completed in collaboration with the
Center for Graphics and Geometric
Computing as well as with the
Geometric Image Processing Lab at
the Technion - Israel Institute of
Technology

Introduction

This project was carried out in the CGGC/GIP lab at the
Technion, under the supervision of Boaz Sternfeld and
Yaron Honen. The objective of the project was to create
planets using simplex noise, with a focus on developing
a level-of-detail (LOD) system that allows for rendering
small details while maintaining optimal performance.

Next, create a system that generates an endless space,
with planets we made before serving as the building blocks.

Afterward, create a planet-naming system and a feature
for locating lost planets within the vast expanse of space.

Features

1) You are in control of a spaceship that can move in all axes
and rotate around all axes.

2) You have the ability to approach planets, allowing you to
observe the terrain of the planet up close, as well as
travel to other planets located at varying distances.

3) The planets are visually diverse with distinct colors and
terrain features.

4) Planets have different temperature zones and regions.

5) The scene has a realistic ambiance due to the
accompanying music and sound design.

6) A warning sound alerts you if you approach too closely to
a planet, helping to avoid any collisions.

7) In the event of a collision with a planet, the spaceship's
screen will break, but the system will recover after a
certain amount of time.

8) An Al assists you throughout your journey, providing
helpful guidance and updates.

9)You can display information on the screen that provides
details about your location in space and the nearest planet
in relation to your position.

10) When discovering a new planet, you have the ability to
name it, and if lost, you can search for it by its designated
name.

11) The game allows you to select the scene with the
appropriate level of complexity based on your
computer's performance, ensuring optimal gameplay
experience.

Technologies and Platforms

1)Unity 2020.3.23f1 for app development

2)Inkscape for 2D art creation

3)SVG REPO for obtaining flat 2D art for the main menu
4)Audacity for sound manipulation

5)ElevenLabs for generating Al speech

6)freesound.org for sound effects

7)Kenny assets for additional sound effects

GENERATION PIPLINE

PLANETS

noise

CUBE — SPHERE — PLANET —>PLANET+=color

PLANET+=CULLING
S~ PLANET+=LOD

PLANET+=COLISSION DETECTION

LOD
ONE MESH COUPLE OF MESHES MESHES CAN
FOR EACH — FOR EACH FACE —)HAVE DIFFERENT
FACE (ONE MATRIX) RESOLUTIONS
WE DO REMESHING ALSO BEFORE \l'
CHANGING MATRICES SMOOTHLY COUPLE OF
BY DISTRIBUTING MESHES LINEARLY «— MATRICES FOR
OVER TIMLINE (REGULARLY JUST EACH FACE

WHEN CHANGING LEVEL OF DETAILS)

Planet Generation

We begin by defining a center point, and using this point as a
reference, we construct 6 faces. For each face, we create a
mesh with a specific resolution, and we arrange vertices in
rows and columns based on this resolution.

Within each square formed by the vertices, we add 2 triangles.
Each vertex is represented by a vector that originates from
the center point. We normalize all of these vertex vectors in
order to generate a sphere. This approach of using 6 faces
and normalizing the vectors to transform a cube into a sphere
will be used throughout the project. However, the number of
meshes and the distribution of the vertices will vary, as we
will discuss in the subsequent sections.

Simplex Noise

After constructing the sphere, we calculate noise using
simplex-like noise. This noise takes a vector3 as input and
outputs a random float between -1 and 1 based on the
position of the vertex relative to the center of the planet.
Simplex noise differs from regular random noise in that values
change smoothly from point to point. We chose this noise

because real terrain values also change smoothly between
points.

~ A

-7
A%

Random noise Coherent noise

We remap the float value from [-1, 1] to [0, 1]. We then
multiply the vertex vector by (1 + value) * radius, resulting in
a transformed sphere that looks increasingly like a planet.
However, there is still work to be done to complete the terrain.

Noise Controling

To gain greater control over the noise, we define a set of key
parameters: "frequency,” "amplitude,” "reducer,” and an
animation curve named "curve." The noise is then calculated
using the following equation:

Max(0, noise(curve(vertex * frequency)) * amplitude - reducer)
The names of the parameters themselves reveal their function;
"frequency"” and "amplitude" set the amplitude and frequency
of the noise, while "curve" remaps the values of the

vertex * frequency to create diverse planets.

The "reducer" parameter is then used to reduce values to zero,
resulting in oceanic features. This approach allows us to

create unique, realistic planets with diverse features, lending
to a more immersive experience.

Layered Noise

To achieve more detailed terrain, we can incorporate multiple
layers of noise instead of just one, as we did previous page.
Each layer has a higher frequency than the previous layer,
while the amplitude is smaller.

After generating the noise for all the layers, we sum their
outputs to obtain the final noise value.

Although there are other techniques for calculating terrain
height, they tend to have a negative impact on performance.
Hence, I decided not to use them in the final version of the
project.

It's worth noting that the higher the number of noise layers,
the more performance-intensive the height calculation function
becomes. This function is used across all the vertices, meshes,
and faces of all the planets. Thus, to optimize performance,

I chose to use only 4 layers in the project.”

Color

We have now come to a crucial point in our project - while we
have successfully generated the planets we set out to create,
they lack the diversity and realistic coloring of actual celestia
bodies.

To address this, we turned to Unity's mesh coloring feature,
which allows us to color meshes by coloring their vertices,
with the triangles being colored by blending the colors of their
three vertices. To implement this, I used Unity Shader Graph
to create a shader that defines a color gradient.

The approach we took was to remap the height of each vertex
to a corresponding color in the gradient, using the minimum
and maximum heights of the planet as the range for the
remapping.

The colors in the gradient are ordered based on height,
ensuring that each color corresponds logically to its
corresponding elevation. With this technique, we can now
achieve diverse and realistic coloring for our planets.

Temperatures

now we have colored the planets but they still boring,

to make the planets look more realistic, we need to give
different regions different temperatures, to achieve that cold
and warm regions should have different colors.

so I came with this implementation where we have 2 color
gradients one for the cold and one for the warm areas what I
do is taking the height of the vertex and take the Y value of
the vertex and as we did in the previous page I get the color
according to the height from both gradients, then make a noise
layer like the one in the section of calculating the height , and
we feed the Y this time to the noise and we remap the output
to acolor between the two colors we got from the gradients.

LOD

Now that we have shaped and colored our planets, we
encounter a problem with proportion.

Mountains appear to be as large as continents due to the
single mesh with a single resolution, this results in having a
few large terrains instead of many smaller ones, and planets
look too small like King Kai's Planet in Dragon Ball.

To address this issue, we begin implementing a level of detail
(LOD) system.

First, I calculate the distance between the camera and the
planet's center and determine the resolution based on the
distance. The closer the camera is to the planet's center, the
higher the resolution will be.

I use distances-resolutions lookup table.

Based on the current distance, I check the distances int the
table and select the corresponding resolution from the
resolutions in the table.

| oot

Multiple Meshes In Each Face

It appears that simply changing the mesh's resolution is not
sufficient for our needs, as Unity only allows up to 256 * 256
vertices, which is too low for our purposes. To address this, we
can use multiple meshes for each face instead of just one.

We introduce a variable called "number of chunks" and create
a matrix of meshes with dimensions equal to that variable.
The illustration below shows an example of how a face would
look when the variable is set to 2.

With this approach, the planets appear more detailed, larger,
and more realistic. However, there is a performance issue with
this method. When the "number of chunks" is increased, the
app's performance rapidly decreases. For example, when the
number is set to 4, the application experiences high frame
drops and is almost unusable.

2

Different Resolutions

To maximize the benefits of changing resolutions for each mesh
, we need to adjust the resolution of each chunk independently.
Instead of basing our lookup table on the distance from the
camera to the center of the planet and setting the resolution
for all meshes across all faces, we need to base our lookup
table on the distance from the camera to the center of each
mesh. By doing so, we can increase the number of chunks to
25 without any issues.

Initially, I was hesitant to take this approach due to the gaps
between meshes and lighting problems that typically arise.

I spent nearly a month searching for alternative solutions,

and after not finding anything , I started thinking about leaving
this project, but ultimately decided to give this approach one
more chance.

In upcoming sections, I'll address the gaps between meshes
and lighting issues in more detail.

l+==l

Automatic velocity Change

Here's a possible rephrased version of the text:

In order to account for the different velocities of various modes
of transportation, I developed a system that adjusts the speed
of the spaceship based on its proximity to the nearest planet.
The closer the spaceship is to the planet, the slower its speed
becomes.

Conversely, when the spaceship is in empty space, it can move
at a much faster speed.

This system serves a dual purpose. Firstly, when the spaceship
approaches a planet, the resolutions of the meshes of the
planets increase significantly, resulting in a high number of
calculations.

To avoid performance issues such as frame drops and lag, it is
necessary to move the spaceship at a slower pace in such
cases.

Secondly, by adjusting the speed of the spaceship based on its
distance from the planet, we ensure that the spaceship does
not collide with the planet or any other obstacles, as the speed
is appropriately reduced when the spaceship is in close
proximity to any objects.

Back Face Culling

To optimize performance even more, we can add another
technique to our LOD system called backface culling.
Backface culling is a method where you cull the faces that the
camera cannot see from the back and sides so that the GPU
doesn't render them.

In my implementation, I cull the meshes that the camera can't
see by calculating the spaceship-planet vector and the
mesh-planet vector and checking the angle between them.

If the angle is greater than a certain number, for example, 90
or 100 degrees, we cull them by disabling the mesh renderer
component. As they are culled, we don't change the level of
detail of that chunk until they are shown again. Then we check
the current LOD that should be shown and the LOD before the
culling. If they are different, we remesh. This approach works
well performance-wise because the angles change smoothly.

Advanced Culling

I observed that when the spaceship is near the planet, fewer
meshes are visible within the camera's frustum. As a result, we
can optimize performance by culling more meshes when the
spaceship is close to the planet. This is particularly beneficial
because the resolutions of the meshes are higher when viewed
up close, requiring more calculations.

To achieve this, I add the angles to the lookup table.

We set a variable called "min lod" to represent the minimum
level of detail for all meshes on the planet. Using this variable,
we select an angle from the lookup table to cull meshes based
on their distance from the camera. When the "min lod" value is
smaller (i.e., when we're closer to the planet), we choose a
smaller angle from the lookup table and cull more meshes
accordingly.

. -

Space Generation

So far we have discussed the process of generating one planet,
but now we need to consider how to build the entire space
while maintaining optimal performance. There are a few key
considerations we need to keep in mind to avoid breaking the
game:

1) Planets should be placed far enough from each other to
avoid too many calculations for the LOD system of both
simultaneously.

2) Distant planets should have fewer vertices to ensure that
rendering is not too expensive for one planet only.

3) We cannot generate an infinite number of planets from the
beginning of the scene, so we need an optimized way to
dynamically generate planets.

To accomplish this, I divided the space into boxes, with each
box containing an inner box. We randomly generate a planet
inside each inner box, that ensures planets are far enough
from each other to maintain optimal performance.

Planets To Show

As I mentioned earlier, it's not feasible to show all the planets
in all the boxes. To address this, we declare two variables:
"max L1 distance" and "max L-infinity distance".

We then show the planets of the boxes that are within L1 and
L-infinity distances from the current box (the box that the
spaceship is currently inside).

In the example below, "max L1 distance" is set to 3 and
"max L-infinity distance" is set to 2. Please note that this
example is presented in 2D for better illustration, but in the
actual project, we work with 3D.

Multiple Mesh Matrices

As we have seen in the previous example, we may end up with
a large number of planets rendered on the screen.

Currently, we have a matrix of chunks for each face, where
the "number of chunks" is set to 20. This means that for each
face, there are 400 meshes.

Even if far planets have the lowest possible resolution, they
will still require a significant number of vertices and triangles
that are not necessary, which worsens performance and puts
unnecessary strain on the GPU,

To address this issue, I added a new feature to the LOD system
in which each face can have multiple matrices. When we get
too far from the planet, we can disable all the meshes of the
first matrix, which has 20 x 20 = 400 meshes, and enable the
second matrix, which has a smaller number of meshes, for
example, 2 X 2 = 4. This way, far planets don't take up much
computational resources. We can go between the matrices
according to how far we are from the planet.”

New Planets

In the previous section, we discussed how planets are shown
based on which box the spaceship is currently in.

However, what happens when the spaceship moves to a
neighboring box to reach another planet? In this case, new
planets must be shown while others need to be removed.
The naive solution might be to instantiate new planets and
destroy the ones that are no longer needed. However, this
approach is computationally heavy and can break the game.

Instead, we can use a more efficient method called object
pooling, which we will discuss in the next chapter.

Object Pooling

Object pooling is a programming technique that involves
reusing and managing a pool of pre-allocated objects instead
of constantly creating and destroying them during runtime.
This can help improve performance and reduce memory usage
in applications that frequently create and destroy objects.

in our project we need to use object pooling for creating and
destroying planets.

Classic object pooling is not a viable solution for our project,
as the planets are essentially the same object with minor
parameter differences, but with over 400 unique meshes that
differ across all planets.

When we retrieve a planet from the pool, we would need to
modify and remesh its meshes according to the new
parameters, which is computationally intensive and would

negatively impact performance. [queué)

=

oo o8
S
NC,
Not modifying the meshes can lead to a bug where the planet
looks different when transitioning from one matrix to another,
but this can be resolved when the meshes change LOD.

Since we have 2 matrices, the first with 20 x 20 meshes and
the second with 4 x 4 meshes, we face a problem with the last
LOD of both matrices.

However, the second matrix is only used when the planet is
very far away, so the camera does not notice the difference in
the planet's appearance.

The real challenge is transitioning from (matrix = 1, LOD = 0)
to (matrix = 2, LOD = last LOD), where we need to remesh all
the planet's meshes intelligently.

We will explore this further in the next chapter.

Y

/

Updating Matrices Smoothly

How to efficiently remesh all the 20 x 20 meshes and when?
We should begin remeshing the "min LOD" becomes 0, we
should end remeshing when we reach the distance where we
need to switch matrices.

To ensure a smooth transition, we need to

divide the meshes linearly over the timeline and remesh them
in small amounts each frame.

This was a significant challenge in the project, and I had to
experiment with various dividing functions.

Initially, I tried remapping the distances from the chunks to the
timeline, but that didn't work well due to the speed of the
spaceship, and the distances were not changing linearly.
Ultimately, I found a solution to remap the meshes based on a
percentage calculation of the rows and columns to distribute
the meshes linearly over the timeline:

(row + column * 20)/400.

we can optimize by remeshing only the meshes not culled due
to back face culling caused bugs, so I left that aside and
focused on updating the matrix meshes smoothly.

During this process, I learned to work with the Unity Profiler to
address the breaks and lags I was encountering.

Working With The Profiler

to know where the frame drops and the lags are coming from
I had to learn to work with the profiler API , write profiler code
so I can group parts of the code and make their perfomance
show in the profiler windows , I grouped 3 main parts.

the smooting code , the defualt remeshing code, and the
default enabling mesh renderers code, then I started to try
understand where are the problems and what is happening

I understanded part of the problems , and others still don't
understand untill now but I think big part of them is because
of my computer is a bad one and doesn't have a real GPU

I will took about that in the later sections

Information Screen

The project has advanced significantly, and now the spaceship
can travel between well-crafted planets in the vast space.
However, a problem arises: there is no navigation or naming
system, which makes it difficult for the captain to distinguish
between two planets with similar shapes and colors.

To address this issue, I created an information screen that
displays relevant information about the planet being observed,
as shown in the screenshot.

closest planet: ???

distance from the planet: 23029.18
spaceship direction: (-0.1, 0.2, -1.0)
planet direction: (-0.5, -0.7, -0.5)

planet position: (188718.2, 229869.1, 185999.5)
current box: (0, 0, 0)

If the spaceship is not currently pointed at the nearest planet,
it can use the spaceship-planet angle to try and minimize it.

closest planet: ???

distance from the planet: 23029.18
spaceship direction: (0.1, 0.0, 1.0)
planet d|rect|on (O 5 -O 7 -O 5)

N

planet posmon (188718 2 229869 1, 185999.5)
current box: (0, 0, 0)

In the screenshot, the planet at the top of the screen is marked
as "???" because it is unknown. Our next objective is to develop
a system that enables the planets to be named.

Naming Planets

At first, I considered using a planet-names database from the
internet to randomly assign names to each planet. However, I
discovered that the names in such databases are often
code-like due to the sheer number of planets discovered,
which is not particularly engaging for the player and doesn't
assist with navigation.

Instead, I came up with a more enjoyable solution which
involves allowing the player to name the planets themselves.
This not only adds an element of fun, but also helps the player
to better remember and distinguish between the planets.

6749235, 185999.5)

Colorful Planef]

The naming system is designed to be intelligent and
incorporates various rules to ensure proper naming
conventions.

For example, it prevents spaces from being used at the
beginning or end of a name, disallows two spaces in a row,
prohibits numbers from being used in the middle of a word,
and requires each word to start with a capital letter.
Additionally, the system dynamically modifies the name as the
player adds or removes letters, providing immediate feedback
to the player.

Finding Planets

Having implemented the planet-naming feature, players can
now recognize the planets they've previously discovered using
the information screen.

However, another problem arises: what if a player wants to
revisit a specific planet, but is too far away and doesn't know
which direction to go in?

To address this, I added an input text field that allows the
player to type in the name of the planet they're searching for.
Once the name is entered, the spaceship is automatically
rotated towards the direction the player needs to travel to
reach the desired planet.

spaceship direction: (0.0, 0.3, 1.0)
planet direction: (-0.6, -0.6, -0.5)

closest planet: ???

distance from the planet: 151471
spaceship direction: (0.0, 0.3, 1.0)
planet direction: (-0.6, -0.6, -0.5)

planet position: (188718.2, 229869.1, 185999.5)
current box: (0, 0, 0)

planet position: (188718.2, 229869.1, 185999.5)
current box: (0, 0, 0)

Colorful Planet

Colorful Planet
distance from the planet: 10870.66
spaceship direction: (-0.4, 0.9, -0.1)
planet direction: (-0.4, 0.9, 0.0)

closest planet: 2??
distance from the planet: 151471
ceship direction: (-0.4, 0.9, -0.1)
ion: (-0.4, 0.9, -0.1)

ion: (188718.2, 229869.1, 185999.5)

) 1ane I €)
planet position: (130026.0, 674923.5, 185999.5)
current box: (0, 1, 0)

Seeking: Colorful Planet
distance from the planet: 10870.66
spaceship direction: (-0.4, 0.9, -0.1)

planet direction: (-0.4, 0.9, 0.0)
sbaceshin-blanet angle

ne
spaceship direction: (-0.4, 0.9, -0.1)
planet direction: (-0.4, 0.9, -0.1)

But what about the planets that are not currently in the scene
due to object pooling?

How can I know their position to calculate the direction and
make the spaceship look at them?

The solution to this problem is that I have created a dictionary,
where each planet's name is used as a key and a corresponding
box is used as the value. Since I use the box as a seed when
calculating the position of the planet, as well as all other
attributes such as noise and colors, I can restore the position
of the planet without it being present in the scene.

Collision

There's one remaining interaction that we need to address:
what if the player intends to collide with a planet? As we
currently lack a collider for the planets, the spaceship would
pass through them, which is problematic. We need to devise a
way to prevent this from happening.

Adding colliders for the meshes seems like a simple solution,
but even if we only add colliders for meshes with LOD = 0,
the collider would still cause lag and poor performance.
Furthermore, Unity cannot add a collider for meshes with a
certain number of triangles.

Unity's code is optimized, so attempting to create colliders
from scratch would be a waste of time without yielding any
results.

This problem put a great deal of pressure on me

because without a way to determine whether there is a
collision or not, the only solution would be to calculate
whether the spaceship is outside a sphere that encloses the
planet, which would remove the fun of exploring the planet's
terrain, and If the supervisors reject this solution, I might have
to abandon the project.

The only path forward was to consider the

limitations of my project that didn't require a collider and
attempt to find a solution based on them.

We know that the vertices of the planet meshes are based on
simplex noise that changes smoothly, and their positions are
calculated based on the noise and their position on the sphere
that we got from the cube with 6 faces we started with.

After a lengthy search, I succeeded to find a solution that
checks for collisions in O(1) time.

I obtained the normalized vector from the center of the planet
to the spaceship, which is now on the small sphere mentioned
earlier.

Then, I pretended that this vector was one of the planet's
vertices, even though the probability of that is low.

Using the same method as we do for the real vertices of the
mesh, I calculated the height of that vector.

I then checked the distance between the spaceship and the
planet.

If it was lower than the height, then a collision had occurred;
otherwise, it had not. However, this method is not entirely
accurate, although it is adequate for our needs. To explain why,
let me provide a 2D example that you can extrapolate to the
project's 3D setting.

As shown in the diagram, the height of vector x can be
anywhere, but we know that there are smooth transitions, so
the vector times height is close to the line between the two
adjacent points. Several factors affect the height's accuracy,
such as choosing a small frequency and amplitude and a large
resolution.

In my project, I opted for these settings to achieve greater
precision. However, there is still some inaccuracy, so I check
whether the distance is less than the height plus a

"collision distance" to prevent the player from entering the
planet.

Here is an example of how this solution may become useless
when using a small resolution with high amplitude and

frequency.

By increasing the resolution, we can observe a significant

difference in the results.
In contrast to the previous example, the solution works

effectively without any issues.

UX and game design

To enhance the player's experience, I implemented several
features to assist them.

Firstly, an Al system was developed to provide the player with
information that they could easily understand and use to
progress further.

Additionally, I color-coded the text on the information screen
to indicate important details, such as changing the distance
from the closest planet to red when the player is too close,
indicating potential danger.

Furthermore, I remapped the angle between the spaceship and
planet from 0-180 to green-red and color-coded the text to
help the player understand that smaller angles are better for
finding the planet.

To further aid the player, I manipulated the sound volume and
pitch.

For instance, when the player is close to a planet, a warning
sound is played, and the pitch of the sound increases as they
get closer to indicate greater danger.

Lastly, since the velocity change is automatic and takes time to
move away from the planet, I increased the sound of the
engine to help the player feel the velocity change.

Al speech making

To create speech for the AI, I followed a few steps.

Firstly, I brainstormed interesting interactions and events that
would require the Al to speak, and wrote appropriate phrases
for those situations. Then, I asked Chat GPT to rephrase and
enhance the sentences in an eloquent manner.

Next, I passed the output of GPT to ElevenLabs to generate
the speech.

Once I received the audio files from ElevenlLabs, I manually
edited them in Audacity to make the sounds more robotic.

I used a technique where I duplicated the audio files several
times and shifted them slightly more each time to create a
realistic Al sound.

- b R

v

- A

T — R o

Finally, I added reverb effects to the sound and imported it
into Unity.

Normals

I will now discuss some challenges that I attempted to mitigate
in my project. Let's begin with the issue of normals, which
arises when two neighboring meshes exist.

In a scene with lighting, all triangles that the light hits should
be affected, and the direction of the normals of these triangles
determines the amount of shading perceived.

In Unity, triangles are colored based on the colors of their
vertices and then blended together.

The same approach is used for normals, where the vertices
have normals assigned to them.

For every point on a triangle, we give it a normal which is the
weighted average of the normals of the vertices forming that
triangle.

The weights are based on the distance from each vertex.

This technique is called "normal interpolating" and it ensures
that there are smooth transitions between two triangle
normals, resulting in a smooth shading transition.

After creating arrays of vertices and triangles and assigning
them to the mesh filter, we can use the built-in

"recalculate normals" method to automatically recalculate the
vertices' normals by averaging the normals of the triangles
that use them.

However, this method only considers triangles that are part of
the exact mesh that the vertex is on.

This causes issues when there are neighboring meshes, as the
vertices on the edges have incorrect normals since the
triangles from the neighboring meshes that use them are not
included in the average.

This leads to visible lines between neighboring meshes.

To fix this issue, I attempted to recalculate the normals

manually by multiplying vectors and taking averages, but I was
unsuccessful.

Eventually, I resorted to disabling the lighting, making normals
irrelevant and eliminating the lines.

Although this solution worked, it resulted in a loss of visual
appeal in the scene.

Gaps

This issue also arises between neighboring meshes, but this
time only for meshes that have different resoluitons.

—._-A

Finding a solution for this problem proved to be a challenging
task, as most of the proposed solutions were complex to
implement and led to other issues or poor performance.
Fortunately, I was able to minimize the impact of this problem
by adjusting some parameters.

For instance, I found that increasing the resolution of the
meshes helped reduce the size of the gaps between them, as
the height changes more smoothly.

Additionally, by increasing the distances in the lookup table,
more meshes were given higher resolutions, which slightly
lowered performance but also made the gaps between
neighboring meshes less noticeable and sometimes even
disappear altogether.

Floating Point Inaccuracy

The problem I'm facing in my project would take me at least a
week or two to fix, if I even succeed in fixing it.

It arises from the fact that I use small numbers like amplitudes
and frequencies for generating small terrain features, such as
mountains reaching 10-3, as well as large numbers like
distances between planets that can reach magnitudes of 1076.
Unity's engine sometimes shows an error message when
numbers exceed 1075, prompting me to use smaller numbers.
As a result, when the spaceship moves in a particular direction
and encounters several planets, issues arise with inaccurate
positioning of meshes and vertices, leading to noticeable gaps
and strange behavior.

In extreme cases, the app may even crash and display an error
message.

One possible solution is to adjust the range of all variables in
the project from (10~(-3) to 1076) to (10~(-4) to 1075),
which would result in problems arising when reaching the 40th
planet.

Alternatively, adjusting the range to (10~(-5) to 10™4) would
delay these issues until reaching the 400th planet, which is
much more desirable than the problems that arise at the 4th
planet.

However, implementing this solution would be time-consuming
since it requires adjusting all numbers in the project, including
the lookup table, velocities, distances, and noise parameters.
Furthermore, reducing the range of humbers may introduce
floating-point errors due to the reduced precision of the values.

After some consideration, I came up with a new solution that
completely resolves the problem, although it requires a lot of
work.

Surprisingly, I got the idea from a simple game called
"Flappy Bird".

In Flappy Bird, the player controls a bird that must avoid
obstacles to progress.

The player feels as though the bird is moving forward, but in
reality, the bird stays in one place while the obstacles move
towards it and disappear when they cross the bird.

i«

:i i@,

Similarly, in my project, I would make the planets move
towards the spaceship at (0, 0, 0), which would eliminate
floating point problems.

However, implementing this solution is not straightforward.
Moving 100 planets, each with 1000 children and over 400
meshes, in every frame would cause the application to crash.
To address this issue, I could move the planet with only its 4x4
matrix when it's far away, and then start smoothly bringing in
the meshes of the 20x20 matrix as it gets closer, as described
in the "Changing Matrix Smoothly" chapter.

This approach would require a significant amount of work, and I
anticipate encountering many bugs that would need fixing.

Further Development

In this chapter, I will discuss the aspects of the project that
require improvement and the things I would like to add to it.
First and foremost, I need to fix the three issues that I
mentioned in the previous chapters. Currently, I have around
15 handmade color gradients that I use to color the planets.
It would be great to procedurally generate colors and develop a
formula that produces logical colors for the planets.
Additionally, I regret not writing cleaner code.

In later stages of the project, I encountered a significant
number of bugs that consumed a lot of time.

I would like to learn how to write cleaner code for larger
projects.

I also want to enhance the shapes of the planets and include
plants and animals on them, but this would pose a significant
challenge due to the limitations of computer performance.
During the project's development, I gained knowledge of the
basics of compute shaders, but I did not use them. I would like
to use a compute shader to calculate the "calculate height"
method and optimize it as much as possible since it is used
millions of times per frame. It would be interesting to observe
the performance differences when running the method using a
compute shader on the GPU instead of the CPU.

Challenges

The project posed a significant challenge that often left me
feeling exhausted and frustrated.

While learning new techniques and materials was
time-consuming, the primary obstacle was working within the
constraints of the computer's performance. Adding new
features required optimizing all previous components, which
compounded the difficulty.

I encountered several problems that were extremely
challenging, such as managing gaps and collisions, and I feared
that if I could not find a solution, I might have to abandon the
project entirely.

Additionally, I faced a further challenge when I encountered
password issues, preventing me from using the lab's
high-speed computers.

This forced me to optimize my the project on my personal
computer, which consumed additional time but ultimately
proved worthwhile when I observed how smoothly the project
ran on the lab's machines without any glitches or lag.

Main Menu

So you're interested in trying out the simulation and running
the app?

The simulation is designed to run on powerful computers, but
I've included a main menu that allows you to select a scene
based on your computer's performance capabilities.

The scene on the left has the fewest planets and the lowest
level of detail (LOD) resolutions, while the scene on the right
has the most planets and the highest LOD resolutions.

Select the scene that best fits your
computer’s performance capabilities

° @é *' @@9

However, I recommend using the most right scene that your
computer can handle, because as I mentioned in the "Gaps"
chapter, when using lower resolutions, gaps tend to be more
visible.

References

During the development process, I extensively watched videos
and read materials from various sources.

Although I came across many ideas, most of them were not
suitable for my project.

However, I found Sebastian Lague's YouTube channel to be the
most important source of information for my project.

In particular, I learned a lot about turning a cube into a sphere,
coloring vertices based on their heights and noise layers, gaps,
normals, flat shading, and optimizations from his two series of
videos:

https://www.youtube.com/playlist?list=PLFt_AvWsXI0cONs3TOBy4puYy6GM22ko8
https://www.youtube.com/playlist?list=PLFt_AvWsX|0eBW2EiBtl_sxmDtSgZBxB3

Another source that I found useful was a person who tried to
expand upon Sebastian's series.

However, his implementations, such as quad trees and edge
fans, were too complex for my project.

I ended up taking only his back face culling idea and expanded
it in the "Advanced Culling" chapter.

You can find his series here:
https://www.youtube.com/playlist?list=PLWRBcuYHwWOZ9QVCaZWChCugGIsWuUaTZA

This is the noise script that I used in the project:
https://github.com/SeblLague/Procedural-Planets/blob/master/Procedural®%20Planet%20Noise/Noise.cs

Last Words

This marks the conclusion of my report.

This project holds a special place in my heart as it was a dream
of mine to create something like this even before starting
university.

I have always been inspired by the magical things that
Sebastian Lague does and I wanted to create something
similar.

I dedicated a lot of time and effort into this project, going
above and beyond what was required.

The report itself is over 40 pages and looks like a project book.
I hope to revisit it in the future and enjoy reading it or use it as
a reference if I decide to add more features to the project.

I want to express my gratitude to God for giving me patience
and strength throughout the development process.

I also want to thank my parents and family for their
unwavering support, Sebastian for his incredible tutorials that I
could draw inspiration from, and my supervisors Yaron and
Boaz for their guidance.

Musa also deserves a special mention for the significant work
he did in other courses that allowed me to complete this
project.

I would also like to thank Lior for his help with fixing problems
related to the lab password and downloading applications on
the lab's computers.

Finally, I want to thank everyone who has shown interest in my
work or has taken the time to read through this report.

If you have any questions, feedback, or ideas, please feel free
to reach out to me via this email address:
saadisaadil@campus.technion.ac.il.

